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Hyper spherical Coordinates for Triatomic
Molecules
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We propose a hyperspherical coordinate system for the three-body problem. The
classical and quantum Hamiltonians are derived as well asthe classical equations
of motion. General expressions for distances between the particles in
hyperspherical coordinates are obtained. Finally, potential energy plots for the
water molecule are constructed.

1. INTRODUCTION

Hyperspherical coordinates have been used extensively to describe
bound states of triatomic molecules [1, 2] and the scattering of an atom by
a diatomic molecule [3, 4].

A system of hyperspherical coordinates for a three-body system may
be divided into internal and external coordinates: the first describe the shape
of the triangle formed by the particles, the latter determine the orientation
of the triangle in space. In this system of coordinates the total angular orbital
momentum depends only on the external coordinates, while the potential
energy surface for an isolated system and the principal moments of inertia
depend only on theinternal ones. Another advantage of hyperspherical coordi-
natesisthat only the hyperradius has an unlimited range; the other coordinates
have finite ranges. One can take full advantage of that when working with
numerical methods since only for one variable will the interval have to
be narrowed.

The purpose of this paper isto present the quantum and classical Hamilto-
nians for three particles, using a new system of hyperspherical coordinates
based on a system proposed by Ohrn and Linderberg for four particles[5]. The

LInstituto de Fisica, Universidade de Brasilia, 70.919-970, Brasilia-D.F., Brazil.

1129
0020-7748/00/0400-1129$18.00/0 © 2000 Plenum Publishing Corporation



1130 Espinola L 6pez and Soares Neto

coordinates lead to a simple three-body classical Hamiltonian and classical
equations of motion. The quantum Hamiltonian isalso simple and the symme-
try of the physical system can be used to decrease the numerical effort.

This paper is organized asfollows. In Section 2 we define mass-weighted
Jacobi coordinatesand our system of hyperspherical coordinates. In particular,
in section 2.2 we establish the form of the quantum mechanical kinetic energy
functional in our system of hyperspherical coordinates. Section 3isaclassica
study of the three-body problem, and expressions for the canonical momenta,
principal moments of inertia, total angular momentum, and kinetic energy
are obtained in this section. In Section 4, we derive the Hamilton equations
of motion. Potential energy surfaces for the water molecule are built in
Section 5. Our concluding remarks are given in the Section 6.

2. THE THREE-BODY PROBLEM: QUANTUM TREATMENT

2.1. Mass-Weighted Jacobi Coordinates and Hyper spherical
Coordinates

Nonrelativistic quantum mechanics for a system of particles with masses
{m} involves the kinetic energy functional
ifVp?

T(mp):Jd RIS o

Here, we denote V; = Vr,, and s is a wave function in the configuration
space, with posmon coordi natas{r }.
Consider a matrix O defined by (for k < N) [5]

)

mm v2 \
Ok = — =), =k
i (MkMk+1) :
S > 2
k+1,k Mk+1
Ojk = O, J >k+1
where
Ml = My, MJ = m + Mj,]_ (3)
Applying the linear transformation to the ?,- vectors, we obtain,
12
- > /M
Ug = ; ”(Hl) Ojk (4)

where nlis the total mass of the system and |, k = 1, 2, 3. We call the
vectors uy the mass-weighted Jacobi coordinates.
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Substitution of the Oy values in Eq. (4) gives

172
- m1m2 - -
U =(———| [roa—r 5
1 My 12
U, = ﬁ(ml n mz) [My(rs —ry) + my(rs — ry)] (6)
and,
= i+ M, + mer
u3:m11 mrznz Msr 3 7

As one can see, the mass-weighted Jacobi coordinates depend on the
distances between particles 1, 2, and 3. We note that u3 is the position of
the center of mass of the system. As the wavefunction is tranglationally
invariant, we have

Va =0 (8)

In order to obtain the kinetic energy function in terms of the coordinates

U, We use
aa m 1/2
k(1 X

ar; (m) O ©)

and obtain from Egs. (2), (3), and (9)

_ik)2 * * *
MJ&[%%‘E+%—@+%—@] (10)
2m du, du;  A9u, AU,  Aug AUz

(W) =

Therefore, thekinetic energy functional isdiagonal in the mass-weighted
Jacobi coordinate system U.

Since the vectors ul and U , define the internal and rotational motion of
the system, we write

o) = G de [ﬂii‘k+%ﬁi‘£]
2m dUy dU; U, U,

The cartesian components of the vectors Uk, in terms of afixed reference
system, are

Gl = U]_XT + Ulyj + U]_ZR (11)
UQ = UZXT + uZyj + U22R (12)

We define a set of hyperspherical coordinates as [5]
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U Uy p Sin 6 cos ¢ 0 0
Uy Uy | = D(aBy) 0 psin®sind 0
0

Uy Uy 0 p COS 0
Vii Vi
X | Vor Vo (13)
V31 Va2
where
D(aBy) = Di(a)D5(B)Da(y) (14)
with
cosa —Sna O
Di(a) =|Sna cosa O (15)
0 0 1
cosB O snp
D@= 0 1 0 (16)
—snB 0 cosp
and
cosy -—-siny O
Dy(y) =(siny cosy O a7
0 0 1

D(apvy) is an orthogona matrix and «, 3, and v are the Euler angles.
In order to define the Euler angles, let X'Y'Z' be a system of orthogonal
axes, and let XYZ be arotating system of axes. The orientation of XYZ relative
to X'Y'Z" a any instant is specified by the three Euler angles «, 8, and .
Initially, the axes XYZ coincide with the X"Y'Z’ axes in the initial position
K’. The «, B, and y angles, are defined by three elementary consecutive
rotations (right hand) [7]: (i) arotation by « (0 = a =< 21) around the Z’
axis, followed by (ii) arotation by B (0 = B = ) around the new Y' axis,
which is also known as the line of nodes, and (iii) finaly, a rotation by v (0
= vy = 2m) around the Z axis.

We define the hyperradius as

2 2
p? = 21 (U + U + U} = 21 |ui|? (18)
i= i=

The principal values of the moment of inertia are given by [5]
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I, = mp?(1 — sin? 6 cos® )
I, = mp%(1 — sin? 6 sin? ¢) (19)
I3 = mp%(1 — cos? 0)

For a system of three particles in the XZ plane (Y = 0), I, = I + I3
[6] is constant. This occurs, necessarily, when ¢ = 0, so

I, = mp? cos’ O
I, = mp? (19a)
|3 = mpZSinze

Thus, the system of hyperspherical coordinates becomes

U, Ux psnd O 0 Vii Vo2
Uy Uy | = D(aBy) 0 0 0 Vor Vo (20
Uy, Uy 0 0 pcost/\vy va

As we are dealing with six degrees of freedom, the V matrix must
contain one degree of freedom labeled o. Defining

coso Sno
V= 0 0 (21)
—snho coso

and substituting Egs. (14) and (21) in Eq. (20), we obtain the components
of u; and u, in terms of the hyperspherical coordinates.

In order to calculate the value of the potential energy surface in hyper-
spherical coordinates is necessary to know the distance between the particles.
From Egs. (5)—(7) we get

172
P2 =Tl = p(n(rr%_;;‘nﬁ) (Sn? 0 cos? o + cos B S 0)¥2 (22)
1

12
|?3 - ?1| = p<m T mz) [(%) (sin? 6 sin o + cos? 6 cos’ o)
1

1/2
+ 2( mmz> (sin?0 sin o cos ¢ — €os*0 Sin ¢ CoS o)
mms

1/2
+ (;—‘2)(9 n?0 sinc + cos’ COSZO')} (23)

1
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and

1/2
F3— 1y = p(m1 T mz> [(%)(sinze sinc + cos0 cos’o)

12
+ 2(%) (sin?0 sin o cos ¢ — €cos?0 sin o CoS o)
MMy

172
+ (r%)(si n%0 cos’c + cos’0 sinzo)} (24)

As the Jacobian of the coordinates transformation is
J=p>sin6 cos6(2 cos’® — 1) sin B
the volume element dr is given by
dr =p°sin@cosf(2cos’®d — 1) sinBdp dd da dB dydo  (25)
and the range of the coordinates can be obtained. 0 = p < », 0 =0 =
/4, and 0 < o = 2.
2.2. Quantum Mechanical Kinetic Energy Functional in
Hyper spherical Coordinates
Equation (10) be written in the following form,

o (ml4 (2w (m (2w (2m |_|ﬁ a¢/auia|2
T = L
CRIN R

X p°sin 0 cos0(2cos?® — 1) sin B dp do da dB dy do (26)

with Y= ll"(uia\) and U, = Uia(pv 0, a, B, , G)-
We proceed now to obtain the kinetic energy functiona in terms of
hyperspherical coordinates. We write

Db _ob dp ol 00 L 0k do , b OB L B dy , O b0

27
JdUiy dp JdUiy 90 dU;, Jdaw dUj, P Iu, dy dUig Jdo JdUj, ( )

and, in order to obtain the components d/du;, in terms of hyperspherical
coordinates, we define, using Eq. (20),
U = DQV (28)
Differentiating U, we have
90U = aDQV + D 9QV + DQ oV (28a)
Multiplying from the left by DT and from the right by VT, we get
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DT 9UVT = DT 9DQWT + D™D aQWT + D'DQ W™  (28h)
Using the fact that VW' = 1 and D'D = 1, we obtain
DT 9UVT = DT 9DQ + 9Q + QaWT (29)

Substituting in Eq. (26) the values of dp/dui,, da/dUis, OB/IU, I/
dUia, and do/du;, obtained from Eq. (29) and using Eq. (27), we obtain
after simplifications,

o (wl4 2w (w (2w (2w 1 . all!

TW) = - |—ih —
) Jo L Jo Jo L Jo {Zm ap
15| Js[2 |32 L |
s — 12 T 25 2517 Mo

o I2J2ll! s %
sin 20 U= L) |1)2< i a(r)}

X p®sin 6 cos 6(2 cos?® — 1) sin B dp do da dB dy do (30)
where Jy, J,, and J; are given by

2

2
1
_l’_
2,

_ip
e

[ I
J’- =11
2l

2
+

. [—COSYy d . d d
J1=—|h( Y—+S|n'y—+COtBCOS’y—>

sSnp da B oy
sny 9 d : ad
= — ——+ _— —_—
J> ﬁ(sinB . cosYaB cotBsmyay> (3D
., 0
J; = —ih —
3 | oy

and |4, |5, and |5 are given by Egs. (19).

3. CLASSICAL TREATMENT
3.1. Angular Momentum
The Cartesian components of the angular momentum are defined as [7]

L= (32)
wa
where T isthe classical kinetic energy of the system, w,, isthe angular velocity
of the molecule, and A = (X, Y, 2).
The generalized conjugate linear momentum for the Euler angles is
defined by [7]
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=T

P, = e (33)
where v = (a, B, v, p, 0, o). Using Egs. (32) and (33), we obtain
6(1))\
Py ; e L (34)

Let P be an arbitrary point in space and let the Cartesian components
of Pinthe two systems XYZ and X"Y'Z" be given by the two column matrix
vectors r and r’, respectively. These vectors are related by the orthogonal
rotation matrix D,

v =Dr (35)
where D is given by Eq. (14) and the matrices of elementary rotations are
given by Egs. (15)—(17).

The inverse transformation of coordinates is given by
r =D (36)
Change of orientation of the XYZ axes in relation to X'Y'Z’ axesis a
function of time, D = D(t) [8], therefore o = «(t), B = B(t) and v = (t).
The infinitesimal rotation associated with w is composed of three sucessive
rotations with angular velocities w, = &, wg = B, and w, = .
The components of w according to Eq. (36) are

(wa)x 0 —sin B cosya
(0a)y | =D 0| = snpsinya (37)
((wa)z) (0‘) ( cospa )
(wp)x 0 sinyB
((‘”B)y) = DeTl(’Y)Dz_l(B)(B> = (COS VB) (39)
(wp), 0 0

and

((’Jy)x 0 0
((%)y) = D3 1(7)(0) = (0) (39)
(w«/)z Y Y

According to Egs. (37)—(39),
(@)yz = (—SinBcosy + Bsiny)i + (@ sinBsiny + B cosvy)]
+ (& cos B + Y)K (40)
Using Egs. (34) and (40), we obtain
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_ Cosvy .
Ly = ~an 5 P + Sinypg + cot B cos yp,
L, = ;;‘—g P. + COSypg — cot B sinyp, (41)

L, = Py
Equation (41) are equivalents to Egs. (31) in the quantum case.

3.2. The Kinetic Energy

The hyperspherical coordinate system defined in Eq. (28), can be writ-
ten as

(Uia)xyz = D(Uia)xyz (42)
or
(Uia)yz = D™ (Uia)xyz
where,
(Uiayz = QV (43)
The kinetic energy in terms of the Jacobi coordinates in afixed frameis
T = 2 (i + [ (44)

The derivatives of the Jacobi vectors in relation to time in the X'Y'Z’
and XYZ systems are related by

dai _ da)| d —
&) =(%) + 9@ )
X'y'z Xyz

Using Egs. (40) and Egs. (45) and simplifying, we have
T =1mp? + 1mp%62 + $mp?6? + 2mp?Ba sin O cos 6 cos y
+ 2mp%as sin  cos 6 sin B siny + +mp?a(sin 2 vy
+ c0s’0 cos*y sin’B + cos’B cos>y — cos’d cos?P)
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+ 1mp?BA(sin®0 cos?h + cos?) + Tmp?y? Sin9
+ mp%aB sin B siny cosy sin?0 + mp2ay cos B sin?0)  (46)

which is the kinetic energy in hyperspherical coordinates.
3.3. The Moments of Inertia

The product and moments of inertia in the body fixed coordinates frame
(XYZ) are given by

I = m(ufy + uf, + U3, + U3) 47)
ly = m (Ui + uf, + uj + U3) (48)
I, = m(ux + Uf, + U5 + U3) (49)
Iy = =M (Ul + Upylpy) (50)
e = =M (Ul + Uplzy) (51)
ly, = =M (Ul + Uxlp) (52)

We define the body-fixed system having the following features:

Applying Egs. (47)—(49), we have

I = 1, = mp?cos?0
ly = 1o = mp? (53)
I, = I3 = mp?sin

Note that |4, I,, and |5 are the same as in Eqg. (19). Only three of the
six coordinates are independent in the XYZ system.
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4. THE CLASSICAL EQUATIONS OF MOTION
Equations (33) and (46) give rise to

P, =mp \

Py = Mp?0

Po = 2Mp?G SiN 6 cos O sin B siny + mp2&(sin®y + cos?0 cos*y
X Sin?B + cos?P cos?y — €os?0 cos?B) + Mp?B sin B siny coswy
X Sinfh + mp2y cos B sin?d

Pg = 2mMp?G sin§ cosh cosy + mp? )
X B(sin?0 cos?y + cos?0) + mp2x sin B siny cos+y sin%0

p, = Mp?y sin® 6 + mp? & cos B sin®0

P, = Mp?G + 2mp?B sin 6 cosH cos~y
+ 2mp2a sin® cosO sinB siny /

(54)

The expression for T in terms of the generalized coordinates and general-
ized momenta is,

p2 p2 L2 L2 L2

=_p+_e_|__x+_y+_z
2m 2, 21, 2, 2,

sin 20

=5 {sin20 L2 — 2L,p, — csc 20P%} (55)
2(11 = 13)
or
sz—§+ L {p§ + sec?0L; + sec?26Lf
2m  2mp? X Y
+ csc?0LZ — 26 sec 20L,p, (56)
+ sec?20p?}

From Eqg. (56) for the kinetic energy, we obtain the equations of motion
given by the Hamilton equations of motion,

__H
G = o (57)
_on

b= 3 (58)

where, g = qi(p, 0, «, B, y, o) and
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H=T+ V(p, 0, 0) (59

The equations of motion are

P,
P
h=" )
P
a=- I S':.LnB(secZe cosyLy — sinwy sec?26L, + sin 20 sec?26 sinyp,,)
2

B=— |—12 (—sec?d sinyL, — sec?26 cosyL, + Sin 26 sec?26 cosy p,)  (60)

. _cospsiny
l,sinp
X cscyL, + sin20 sec?20p,)

(sec?0 cosy cscyLy + sec?26L, + csc?0 sin B sec B

. | .
o =(|1_—2|3)2(9n29|_y_ p(,)

L2 m)_av
Po= p{T Zm} ap

. _1f sn® , 1 ., cosb , 2P, _
Po |2{ cos20 X o220 ¥ S0 2 cosi20 (sin?20 + 1)y
_ sin26 p2 | _ Y
cos’20 “f 90
- ) (61)

b = —i{(cosBpa — p,)[sec? cosyL, + 2(sin26p, — L,)
X sec?20 siny] csc?B}
b, = _i{ (sec?0 — se(:Zze)Ly +sin20p,}Ly J

_ov
Jo

The equations of motion given by Egs. (60) and (61) can be solved by
numerical methods for a given realistic potential energy surface V(p, 6, o).

5. PLOTS OF A POTENTIAL ENERGY SURFACE

In this section we show severa plots of a potentia energy surface for
the water molecule (H,O) in our system of hyperspherical coordinates. We
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use atomic units (a.u.) and consider the hydrogen mass my = 1837.416951

au. and the oxygen mass my = 29156.946713 a.u.. The potentia energy
surface is given by

U(a) = Ee(a) + Vin(al) (62)
where E4(q,) represents the electronic energy of the molecule, and V,,,(qy) is
N
Vi = 3 &4 (63)
k=l Tw

where Z is the nuclear charge and ry is the distance between two nuclei.
Figure 1 is the representation of U(q,) in relation to the 6 and o coordi-
nates, where the p value is fixed. The two identical regions shown in the
plot reflect the symmetry due to the presence of two identical hydrogen atoms
in the system. The permutation symmetries are contained in the (6, o) plane.
Figure 2 is the representation of the U(q,) values as a function of p and
o (0 is fixed) coordinates; the range of variation of the hyperradius is con-

[B=mit)

Fig. 1. The H,O potential energy surface in relation to 6 and o. The hyperadius p is fixed at
0.01 hohr.
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(p=10.01)

Fig. 2. The H,O potentia energy surface in relation to p and o. The hyperangle 6 is fixed at
/6.

strained to 0 = p = 1. We notice that for p — 0, the potential rises rapidly
due to the repulsion of the nuclei when they are close toghether.
Figure 3 plots the potential energy surface in relation to p and 6 with
o fixed at 3m/2. We can see the behavior of U(qy) in the dissociation region.
Figure 4 is a plot of U(qy) in relation to p with ¢ = w/4 and 8 = /4.
Therangeof pisO = p = 2.5. Theplotissimilar to that of adiatomic molecule.

6. CONCLUSIONS

In this paper we defined a novel system of hyperspherical coordinates
for three body systems and treated in detail the quantum mechanics and the
classical mechanics of such systems.

The quantum mechanical Hamiltonian is simple and easy to implement
for numerical calculations. Although some classical equations of motion are
indeed very simple, the relative complexity of many others demands the use
of numerical methods for their solution when applied to particular cases. In
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u AL P

(g=m'2)

Fig. 3. The H,O potential energy surface as a function of p and 6 with ¢ fixed at 3w/2.

these coordinates, the motion of a three-particle system in space is equivaent
to the motion of one particle in a six-dimensional space.

We also stressthat the method of orthogonal transformation, using matrix
algebra, is efficient for passing from Cartesian coordinates to hyperspheri-
cal coordinates.

Equations (22)—(24) are general expressions for the distances between
the nuclel for any three-atom molecule in terms of the internal coordinates
p, 0, and o.

The results obtained show that the hyperspherical coordinate system
used is very convenient: it allows a simplification of the expressions, and it
also leads naturally to a separation of the coordinates into two groups.
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Fig. 4. The H,O potential energy surface as a function of the hyperadius p with both o and

0 fixed at /4.
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